Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Gary D. Fallon,* Jayamini Illesinghe, Eva M. Campi, W. Roy Jackson and Andrea J. Robinson

School of Chemistry, Box 23, Monash University, Victoria 3800, Australia

Correspondence e-mail: g.fallon@sci.monash.edu.au

Key indicators

Single-crystal X-ray study T = 123 KMean $\sigma(C-C) = 0.002 \text{ Å}$ R factor = 0.033 wR factor = 0.084 Data-to-parameter ratio = 12.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1,2-Bis[(2*R*,5*R*)-2,5-dimethylpyrrolidin-1-yl]benzene

The title compound, $C_{18}H_{28}N_2$, with a crystallographic twofold rotation axis, can function as a C_2 -symmetric diamine ligand.

Received 30 June 2003 Accepted 11 July 2003 Online 24 July 2003

Comment

 C_2 -Symmetric diphosphine ligands, such as Me–DuPHOS [1,2bis(2,5-dimethylphospholano)benzene; Burk, 1991], have been used extensively in enantioselective hydrogenation reactions (Burk *et al.*, 1993). Chiral diamines have been shown to act as effective chiral modifiers of the osmium tetroxide dihydroxylation of alkenes (Johnson & Sharpless, 2000). The nitrogen analogue, (I), of Me–DuPHOS has been prepared and evaluated as a ligand for use in the osmium tetroxide dihydroxylation of stilbene. An X-ray structure determination of (I) was undertaken to confirm the stereochemistry (Fig. 1). The molecule has crystallographic twofold rotation symmetry.

Experimental

1-Amino-2-[(2R,5R)-2,5-dimethylpyrrolidin-1-yl]benzene (400 mg, 2.11 mmol) was added to a solution of (2S,5S)-2,5-hexanediol cyclic sulfate (Burk et al., 1993) (379 mg, 2.11 mmol) in tetrahydrofuran (THF, 100 ml). The resulting orange solution was refluxed for 2 d after the addition of 80% sodium hydride (633 mg, 21.10 mmol). As thin-layer chromatography indicated the presence of unreacted aminophenyl pyrrolidine, more cyclic sulfate (379 mg, 2.11 mmol) dissolved in THF (30 ml) was added. The mixture was stirred at reflux for a further 2 d and then quenched with 10% NH₄Cl (30 ml). The THF was removed under reduced pressure and the aqueous mixture extracted with dichloromethane (3 \times 100 ml). The combined organic extract was washed with water (100 ml) and brine (100 ml), dried (MgSO₄), filtered and evaporated to give a brown semi-solid. Purification using column chromatography (10% ethyl acetate/hexane) gave the diamine (I) as a colourless solid (408 mg, 71%); m.p. 381-385 K. Diethyl ether (10 ml) was added to the diamine and single crystals suitable for X-ray structure determination were obtained by slow evaporation of the solvent.

Crystal data

 $C_{18}H_{28}N_2$ Mo $K\alpha$ radiation $M_r = 272.42$ Cell parameters from 11 552 Orthorhombic, P22121 reflections a = 8.5423 (2) Å $\theta = 3.8 - 28.3^{\circ}$ $\mu=0.07~\mathrm{mm}^{-1}$ b = 8.8892 (2) Å c = 10.6486 (2) Å T = 123 (2) K V = 808.59 (3) Å³ Prism, colourless Z = 2 $0.25 \times 0.20 \times 0.18 \text{ mm}$ $D_x = 1.119 \text{ Mg m}^{-3}$

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

organic papers

Data collection

Nonius KappaCCD diffractometer	$R_{\rm int} = 0.043$
Thick-slice φ and ω scans	$\theta_{\rm max} = 28.3^{\circ}$
11 552 measured reflections	$h = -11 \rightarrow 11$
1174 independent reflections	$k = -11 \rightarrow 11$
1094 reflections with $I > 2\sigma(I)$	$l = -14 \rightarrow 14$
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0398P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.033$	+ 0.1166P]
$wR(F^2) = 0.084$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.07	$(\Delta/\sigma)_{\rm max} < 0.001$
1174 reflections	$\Delta \rho_{\rm max} = 0.17 \ {\rm e} \ {\rm \AA}^{-3}$
93 parameters	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

H atoms were included in the riding-model approximation [methine C-H = 1.00 Å, methylene C-H = 0.99 Å, methyl C-H = 0.98 Å and aromatic C-H = 0.95 Å; U_{iso} (H) is $1.2U_{eq}$ (C)]. The absolute configuration cannot be determined reliably from the diffraction data and was assumed from the synthesis; Friedel opposites were merged in the final cycles of refinement.

Data collection: *COLLECT* (Nonius, 1997–2002); cell refinement: *HKL SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *HKL DENZO* (Otwinowski & Minor, 1997) and *SCALEPACK*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* publication routines (Farrugia, 1999).

The authors thank the Australian Research Council for the award of a Discovery Grant and for provision of a postgraduate research award to JI.

Figure 1

View of (I) (50% probability displacement ellipsoids)

References

- Burk, M. J. (1991). J. Am. Chem. Soc. 113, 8518.
- Burk, M. J., Feaster, J. E., Nugent, W. A. & Harlow, R. L. (1993). J. Am. Chem. Soc. 115, 10125.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Johnson, R. A. & Sharpless, K. B. (2000). Catalytic Asymmetric Synthesis, edited by I. Ojima, ch. 6D, pp. 357–396. New York: Wiley-VCH.
- Nonius (1997-2002). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.